Typen von Logikgattern und Symbolik (Wikipedia)

NameFunktionSymbol in SchaltplanWahrheits-
tabelle
IEC 60617-12 : 1997 &
ANSI/IEEE Std 91/91a-1991
ANSI/IEEE Std 91/91a-1991DIN 40700 (vor 1976)
Und-Gatter
(AND)
Y = A \wedge B

Y = A\cdot B

Y = A\,B

Y = A\,\&\,B
IEC AND label.svg Logic-gate-and-us.svg Logic-gate-and-de.png
ABY
0 0 0
0 1 0
1 0 0
1 1 1
Oder-Gatter
(OR)
Y = A \vee B

Y = A + B\,
IEC OR label.svg Or-gate-en.svg Logic-gate-or-de.png
ABY
0 0 0
0 1 1
1 0 1
1 1 1
Nicht-Gatter
(NOT)
Y = \overline{A}

Y = \neg A

Y = \tilde A
IEC NOT label.svg Not-gate-en.svg Logic-gate-inv-de.svg
AY
0 1
1 0
NAND-Gatter (NICHT UND)
(NOT AND)
Y = \overline{A \wedge B}

Y = A \overline{\wedge} B

Y = \overline{A\,B}

Y = A|B
IEC NAND label.svg Nand-gate-en.svg Logic-gate-nand-de.png
ABY
0 0 1
0 1 1
1 0 1
1 1 0
NOR-Gatter (NICHT ODER)
(NOT OR)
Y = \overline{A \vee B}

Y = A \overline{\vee} B

Y = \overline{A + B}

Y = A - B
IEC NOR label.svg Nor-gate-en.svg Logic-gate-nor-de.png
ABY
0 0 1
0 1 0
1 0 0
1 1 0
XOR-Gatter (Exklusiv-ODER, Antivalenz)
(EXCLUSIVE OR)
Y = A \,\underline{\lor}\, B

Y = A \oplus B
IEC XOR label.svg Xor-gate-en.svg Logic-gate-xor-de.png
oder
Logic-gate-xor-de-2.png
ABY
0 0 0
0 1 1
1 0 1
1 1 0
XNOR-Gatter (Nicht-Exklusiv-ODER, Äquivalenz)
(EXCLUSIVE NOT OR)
Y = \overline{A \,\underline{\lor}\, B}

Y = A \,\overline{\underline{\lor}}\, B

Y = \overline{A \oplus B}

Y = A \odot B
IEC XNOR label.svg Xnor-gate-en.svg Logic-gate-xnor-de.png
oder
Logic-gate-xnor-de-2.png
ABY
0 0 1
0 1 0
1 0 0
1 1 1

 

Mehr zu Logikgattern und Wahrheitstabellen (Wikipedia):

https://de.wikipedia.org/wiki/Logikgatter